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Abstract

Fuzzing is a software testing method that assesses the safety
and functionality of the software by feeding it with ran-
domly generated inputs. Among various fuzzing techniques,
coverage-guided fuzzing and greybox fuzzing aim to expand
the portion of tested code, referred to as coverage, by using
it as a signal to select seed inputs for effective mutation and
exploration. However, despite this feedback mechanism, the
number of explorable code paths diminishes exponentially as
the branching depth increases, making it challenging to cover
deeper execution paths solely through random mutations. In
such cases, a branch blocker refers to a specific branch that
is not taken before, thereby blocking the execution of subse-
quent code paths. Besides, with the significant advancements
in large language models (LLMs), fuzzing strategies that lever-
age LLMs have been explored recently, particularly for seed
generation and fuzz harness generation. In this paper, we pro-
pose a system Branch Flipper that localizes branch blockers
and generates inputs to unlock them using LLMs. To miti-
gate LLM hallucinations and improve reliability, the system
incorporates a grounding process using oracles and coverage-
based feedback. Rather than solely relying on randomness,
the system addresses branch blockers semantically, utilizing
the reasoning capabilities of LLMs. We conduct experiments
to test the validity of the system, and they demonstrate that the
branch flipper effectively addresses fuzz blockers. Moreover,
its capability of generating inputs that reach suspicious or
potentially vulnerable functions also indicates its practical
applicability to penetration testing contexts.

1 Introduction

Fuzzing is a software testing methodology that assesses soft-
ware robustness by generating random program inputs to
identify potential ill-behaviors. Among various approaches,
greybox fuzzing utilizes code coverage to expand the test-
ing scope by applying random mutations to seeds that previ-
ously increased coverage. However, random mutation alone

poses limitations even under the coverage feedback. Partic-
ularly, randomly mutated inputs struggle to take the unhit
branches of nested or complex predicates. In practice, grey-
box fuzzers used in projects like OSS-Fuzz [23] often exhibit
coverage saturation, where further code paths are no longer
being discovered despite continued testing. To address this,
grammar-based fuzzing and similar techniques have been
studied, but these typically require hand-crafted features and
domain knowledge, making it difficult to scale fuzzing to a
wide range of software targets.

Large Language Models, also referred to as LLMs [2],
have shown a dramatic improvement in their natural language
generation capabilities. With an instruction tuning [20], it has
become possible to produce user-intended outputs even with
zero or few samples [28]. By leveraging these capabilities,
there has been a growing interest in applying LLMs to fuzzing.
Recent studies have explored using LLMs to generate fuzz
harnesses(drivers) [16, 23, 29], and to generate input seeds [7,
12, 18, 24, 25]. In the case of harness generation, however,
evaluating whether the generated harnesses truly reflect the
actual use cases remains a significant challenge. Even if a
crash is triggered by the generated harness, it is often difficult
to convincingly argue that the resulting crash is meaningful
or to maintain consensus on its validity.

On the other hand, leveraging LLMs for seed generation
also suffers from challenges. While random mutation can
be performed and evaluated at a very high frequency, LLMs
require high-performance hardware and thus suffer from the
inevitable latency, making it impractical to completely replace
random mutation with them. Even when using LLM APIs, the
process can be costly in terms of both time and resources. As
a result, there is a growing need for strategies that selectively
incorporate LLMs.

Recently, there have been efforts to fully automate pen-
etration testing using LLM-based agentic systems, such as
ReAct [32]. These systems are capable of planning actions,
sending queries, interpreting results, and managing history
throughout the process [8, 13]. Furthermore, U.S. DARPA,
Defense Advanced Research Projects Agency, launched the



AI Cyber Challenge (AIxCC), a competition aimed at devel-
oping AI agents that automatically discover vulnerabilities in
open-source software projects, which are widely and actively
used, but their security and reliability are often treated as
secondary concerns. Given the diverse scope of open-source
projects and the broad range of potential vulnerabilities, the
competition requires a general-purpose testing system that
can effectively handle such variability.

To support greybox fuzzing in various situations and com-
plement its random mutation strategy, we propose a system,
Branch Flipper, which aims to generate blocker-unlocking
inputs when fuzz blockers are encountered during fuzz test-
ing. Our system consists of a blocker localizer, a LLM-based
agentic framework capable of generating seeds with feedback-
driven refinement. Our system extends beyond traditional
LLM-based input generation approaches, which narrow the
scope to focus on LLM-generatable formats, such as JSON,
XML, and source code. To enable the generation of vari-
ous types of inputs, including binary files, we incorporate
a Python-based and Kaitai Struct [21]-based seed generator.
Additionally, we provide the LLM with reference seeds to
facilitate the generation of inputs. To mitigate LLM hallucina-
tion, we employ coverage-based feedback, along with various
auxiliary tools, enabling the system to reliably flip specific
branches in the target function. These findings demonstrate
the potential of our approach to enhance grey-box fuzzing by
supporting the execution of previously unreachable paths in a
semantic manner.

This study is part of the AIxCC competition; this capabil-
ity is not only valuable for resolving fuzz blockers but also
contributes to the broader AIxCC objective by enabling the
generation of seed inputs that can reach suspicious code re-
gions. If the existing seed pool is unable to reach a target
function, our system can analyze the call chain, identify the
blocking condition, and generate inputs to unlock the blocked
path.

This report presents the development and technical vali-
dation of a system designed to identify and overcome fuzz
blockers, facilitating deeper and more targeted software test-
ing in large-scale, diverse open-source codebases.

2 Related Works

Fuzzing open-source software, specifically, OSS-Fuzz [23]
has conducted cluster-level fuzzing on open-source projects
and reported discovered crashes. The range of testing includes
not only command-line programs, but also more complex
systems such as HTTP servers [22], GUI software, and even
device drivers. To fuzz such software using existing fuzzers [3,
15,33], a corresponding fuzz driver or fuzz harness is required
to forward random byte strings to the proper APIs. However,
despite the novelty of greybox fuzzing, its heavy reliance on
random mutations poses limitations, particularly in exploring
code paths beyond a certain depth. As a result, deeply nested

or complex execution paths often remain untested.
Recently, large language models (LLMs) have been devel-

oped and utilized in various areas. Large Language Models
(LLMs) are a class of deep learning models constructed with
carefully designed neural network architectures [26] and a
vast number of parameters, enabling them to store and repre-
sent a large amount of information. These models are capable
of identifying patterns from user-provided input prompts and
generating appropriate responses [2]. Moreover, through Re-
inforcement Learning from Human Feedback(RLHF) [20],
they are further trained to produce helpful and user-aligned
responses. LLMs are typically trained to predict the next to-
ken given a sequence of input tokens. During generation, they
follow an autoregressive decoding scheme: the model predicts
the next token, appends it to the end of the sequence, and then
uses it as input for the next token prediction. This process
continues iteratively, producing coherent and context-aware
outputs. Depending on the provided prompt, LLMs can inter-
act with users in a conversational manner. Recently, advanced
prompting techniques beyond simple dialogue have also been
explored [1, 4, 27, 28, 31].

Moreover, LLMs have evolved in a "thinking mode", where
they internally generate intermediate thoughts before produc-
ing a final answer [5,6,9,10,19]. These models often begin by
generating internal representations that they consider useful
for solving the given task, and use them as a precondition to
produce more accurate and reliable responses. This approach
typically utilizes Monte Carlo Tree Search, where the model
is trained to select token sequences with higher expected accu-
racy. By simulating and evaluating multiple reasoning paths
before answering, these models demonstrate improved perfor-
mance on complex tasks requiring multistep reasoning.

From this background, there has been a growing interest
in applying LLMs to fuzzing. These approaches may involve
generating fuzz harnesses(drivers) or producing a seed corpus.
The generation of fuzz drivers typically requires substantial
domain-specific knowledge about the target library or API,
making the process human-intensive. To alleviate this, several
studies have proposed automating harness generation using
LLMs [16,23,29]. OSS-Fuzz-Gen [23] attempts to generate a
harness for each individual function, while PromptFuzz [16]
explores interactions across multiple APIs. However, the har-
ness generation presents a notable challenge: evaluating the
correctness of the generated harness. When crashes are trig-
gered, it is often difficult to reach a consensus on whether the
crash is meaningful or realistically exploitable in real-world
scenarios.

There have been numerous attempts to apply LLMs to
fuzz corpus generation [7, 12, 17, 18, 25]. Most of these ef-
forts have focused on LLM-generatable inputs, such as XML,
JSON, or source code, often targeting specific domains. How-
ever, applying these methods to binary-level software remains
challenging. To address these limitations, some approaches
generate Python scripts instead, which are then executed to
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Figure 1: Overall architecture of the Branch Flipper. The system consists of three components: (1) a seed generator, (2) a branch
target localizer, and (3) a seed evaluation and feedback module. Each component runs in a peer-to-peer manner, where each
agent is self-directed, performing local tasks and initiating tool calls or requesting other agents via a message queue.

produce binary inputs [24]. Nonetheless, due to the latency
of LLM, fully replacing traditional mutation engines is infea-
sible in terms of throughput. As a result, a common strategy
has augmented existing fuzzing workflows by generating a
limited number of high-quality seed corpora, which can then
be used to enhance or bootstrap the mutation-based fuzzing
process [17].

Some studies have tried to fully automate penetration test-
ing using LLM agents [32], which can plan, execute, and self-
correct from feedback in a fully end-to-end manner [8, 13].
The AI Cyber Challenge (AIxCC), organized by the U.S. De-
fense Advanced Research Projects Agency (DARPA), is a
gamified autonomous hacking competition. In the compe-
tition, teams are provided with a selection of open-source
projects of various programming languages and domains in
the OSS-Fuzz format. Teams then deploy AI agents that iden-
tify vulnerabilities and generate proof-of-concept (PoC) seed
inputs without any human intervention, and submit patches
for discovered bugs. Points are awarded when a submitted
seed triggers a sanitizer when run through the predefined har-
ness, indicating a successful vulnerability discovery. However,
duplicate submissions that stem from the same root cause are
penalized. Projects are presented in two modes: diff mode,
which focuses on identifying vulnerabilities introduced in
recent Git commits, or full mode, which analyzes the entire
codebase without considering the editing history. After dis-
covering vulnerabilities, teams can also submit patches, and
points are granted if the patch prevents the vulnerability while
maintaining its functionality.

3 Method

In this section, we introduce the BranchFlipper, an LLM-
based seed generation for unlocking fuzz blockers. The
BranchFlipper comprises several components: LLM-based
seed generation using Kaitai Struct [21], a Joern [14]-based
fuzz blocker localizer, LLM-based seed generation, and a
coverage-based feedback loop.

3.1 Overview

This work, Branch Flipper, is part of the AIxCC project.
Our AIxCC system runs fuzzers in the background with the
BranchFlipper to prepare a collection of seeds, which serve
as a baseline input when the system attempts to generate a
PoC of corresponding vulnerable functions. Thus, to acquire
at least one seed for each function, this work aims to maxi-
mize function coverage by generating seeds that unlock fuzz
blockers and support the discovery of new functions.

Our proposed Branch Flipper system consists of three major
components: (1) a seed generator, (2) a branch target localizer,
and (3) a seed evaluation and feedback.

LLM-based seed generation has been an active area of re-
search [7, 12, 17, 18, 24, 25], with most prior works focusing
on natural language-compatible formats, and directly generat-
ing binary inputs remains challenging. Some approaches [24]
guide LLMs to generate Python scripts, which are then exe-
cuted to produce binary files.

To support more flexible and LLM-friendly binary han-
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Figure 2: Workflow of a Kaitai descriptor generation.

dling, we utilize Kaitai Struct [21], a structured YAML-like
language for describing binary formats. Modern LLMs are
typically familiar with this format, making it a practical choice
for bridging the gap between natural language capability and
binary manipulation. In our system, given a harness code, the
LLM attempts to generate a corresponding Kaitai Struct de-
scriptor. From a pool of Kaitai descriptors, the system selects
one to decode the binary, yielding a structured representation,
and then feeds it to an LLM. The LLM then mutates this
structured representation based on the analysis of the targeted
branch blocker, re-encodes it into a new binary input. If the
targeted branch is successfully taken by the new input, the
system proceeds to the next candidate; otherwise, it requests
a retry with the aid of debugging tools.

To localize the fuzz blocker, we initially extract the function
call graph using Joern [14] from the whole codebase. During
fuzzing, we monitor function coverage, and if a function is
covered but its callee remains unhit, these unhit callees and
caller pairs are collected as candidates. The most impactful
candidate then becomes the next target. Concurrently, we
collect the seeds that reach each function and use them as a
baseline for seed generation.

Through this iterative loop, we aim to generate blocker-
unlocker with enhanced binary generation capabilities and
grounding LLM hallucinations. Ultimately, this enables the
LLM to contribute meaningfully to branch blockers within
the greybox fuzzing pipeline.

3.2 Kaitai Struct Generation
Previous studies have primarily focused on natural language-
compatible seed formats, those used in JSON/XML parsers or
compilers, allowing them to directly generate fuzzing seeds
and use them as-is during fuzzing. However, due to the in-
herent limitations of LLMs in directly constructing low-level
byte streams, [24] has attempted to generate Python code
that creates a binary file. This approach is particularly useful
when fuzzing harnesses rely on FuzzedDataProvider-style
APIs, which require a precise understanding and crafting of

byte-level inputs.
Kaitai Struct [21] offers a YAML-based structured lan-

guage for describing binary formats. Given a description, the
Kaitai compiler generates Python modules that provide both
parsers and generators for the corresponding byte stream. In
our study, we support two methods for generating byte stream
inputs:

1. The traditional approach of using LLMs to generate
Python-based parsers and generators(decoders and en-
coders).

2. A new approach that leverages LLM-generated Kaitai
Struct descriptors, which are then compiled and used to
parse and generate binary inputs.

The system provides a fuzzing harness code to the LLM
and instructs it to first understand the code. The LLM is capa-
ble of searching function definitions, references, and reading
the code to understand the context. It then attempts to gener-
ate a Kaitai struct descriptor based on the understanding. If
the Kaitai compiler fails to compile the descriptor, the system
returns the compiler error to the LLM, prompting a revision
until a valid and compilable Kaitai description is produced.

Modern LLMs such as GPT-4o, o4-mini, o3, and Claude
3.5 Sonnet already know and understand Kaitai Struct and
often demonstrate notable generation capabilities for near-
correct descriptors. However, syntactic and semantic errors
also remain common. Hence, we construct an iterative feed-
back loop involving compilation success/failure signals to
guide the LLM toward producing compilable Kaitai descrip-
tors.

Figure 3: A sample descriptor generated by the Claude 3.5
Sonnet when the harness code of the project libpng is given.

However, the performance of LLMs tends to degrade with
longer context lengths [11]. Empirically, we observed that
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when the provided source code or conversation becomes
lengthy, the compile success rate decreases. We also noticed
that LLMs sometimes oversimplify Kaitai descriptions, omit-
ting crucial structural details to minimize compile errors. De-
spite these issues, Kaitai-based representations can sometimes
provide a more precise description of binary inputs than their
Python-only counterparts.

Figure 4: Some cases of oversimplified generated encoders
of Kaitai and Python settings. Left one is generated Kaitai
descriptor when the Nginx harness is given, and the right one
is generated Python-based encoder when the libpng harness is
given (the same harness as Figure 3.) Both are oversimplified
and simply forward inputs to outputs as is.

In practice, to maximize the system’s effectiveness, we
adopt a stochastic strategy: for each seed generation task,
the system stochastically chooses between the Python-based
encoder and the Kaitai struct encoder. And also in cases where
Kaitai compilation fails, the Python-based encoder serves as
a fallback.

To be effective, the Kaitai descriptor must not only be com-
pilable but also correctly decode actual seeds. Since our gen-
erated decoders operate on the corpus generated by the fuzzer,
they must be robust enough to handle a wide range of inputs.
Therefore, we incorporate a decoding test (or oracle) after
compilation: given a fuzzing corpus sample, the compiled
decoder tries to decode it, and decoding failures are reported
back to the LLM. This additional feedback helps guide the
LLM to produce more resilient and generalizable Kaitai struc-
tures.

3.3 LLM-based Seed Generation
Once a suitable encoder has been constructed (either Python-
based or Kaitai-based), the LLM is now able to generate
concrete binary seeds.

Our goal is to analyze a specific branch predicate and gener-
ate a suitable seed. However, reaching this particular predicate
often requires passing through multiple prior control flows,
and each imposes its own constraints on the inputs. As the
depth of nested predicates increases, attempting to satisfy the
target predicate from scratch (i.e., without initial guidance or
baseline) while preserving all prior becomes exponentially

more complex, especially given the context-length limitations
of LLMs.

To address this, we utilize the collected seeds from the
fuzzer run. We assume that we already possess a seed that
has successfully reached the function containing the target
predicate. Using this as a starting point allows us to focus only
on solving the target predicate, which has already satisfied the
earlier branches, and we can effectively reduce the problem
complexity.

In our system, given a seed that reaches the function con-
taining the target branch predicate, we perform the following
sequence:

1. The LLM is provided with the line number of the target
branch, and the corresponding seed previously reached
the function.

2. The LLM analyzes the branch predicate at the target
location and uses the given seed as a starting point.

3. The LLM tries to generate a new seed that seems to take
the desired branch.

Since raw binary seeds are uninformative to LLMs, we
decode the seed into a structured JSON format using the
previously generated decoders. This JSON representation
allows the LLM to understand and reason about the input
fields in a semantically meaningful way.

Based on this plan, the LLM generates a Python script that
produces a binary seed aiming to satisfy the branch condition.
This script is executed within a sandboxed environment to
produce the final seed file. The resulting binary input is then
executed within the fuzzing harness to verify whether the
target branch was taken.

3.4 Joern-based Fuzz Blocker Localizer
Our second challenge was how to localize fuzz blockers and
feed them into the branch flipper. The current requirement
is that unlocking a predicate within a given function must
allow the discovery of previously unexplored functions. We
addressed this in two stages: the first defines the frontier, and
the second localizes the targeting branch within that frontier.

3.4.1 Call Graph and the Frontiers

The first stage involves defining the frontier. A frontier refers
to a function candidate that has been hit at least once during
fuzzing and has at least one callee function that has never
been invoked. In other words, if a certain predicate in this
function is triggered, it could lead to the exploration of a new
function that had not been visited before.

There are various ways to build a call graph. We employ Jo-
ern [14], a general-purpose static analyzer known for its speed
and stability. Joern supports the extraction of a Code Property
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Figure 5: Workflow of the blocker-unlocker generation. The LLM is provided with structured inputs, including a decoded baseline
seed, target file, and branch. Then, the LLM starts to analyze the predicate using certain tools, finding function definitions and
references, reading them, and attempting to generate a new seed.

Graph (CPG), including call relationships. In C/C++ open-
source projects, macro variables and compiler preprocessor
often conditionally enable or disable certain code paths. As a
result, call relationships visible in source code may not exist
in the final compiled binary, creating false positives. Joern
mitigates this by explicitly handling macros and automatically
including relevant header files, yielding more reliable results
than tools like GNU Global [30].

In parallel to the LLM Agent, we continuously run fuzzers
in the background. Whenever the LLM generates a new seed,
it is added to the fuzzer’s seed corpus. This setup allows the
system to continually integrate new seeds and expand func-
tion coverage through basic mutation. When a new seed is
generated, a background process monitors this event, checks
coverage, and updates the metadata from the call graph ac-
cordingly.

Each node in the call graph stores metadata, including its
shallowest-known caller, the call depth, and a visit flag. When
a new seed expands function coverage, we traverse the call
graph, updating the caller metadata and propagating to its
callee nodes. If a function node has at least one unvisited
callee, it is labeled as a frontier and queued for branch flip-
ping.

However, the number of such frontiers can be massive, of-
ten exceeding 10,000 per hour during early fuzzing. Invoking
the LLM Agent for each of these is impractical in terms of
computational budgets. In practice, some of these frontiers are
unlocked by random mutators before being conveyed to the
branch flipper agent. Therefore, we implement a hard waiting
time for each queued frontier. Only after this waiting period,
we check whether the callee remains unvisited, and only then
proceed to branch flipping.

3.4.2 Branch Localization

Once a frontier is determined, we must identify a branch
predicate to target. Since our goal is to trigger an unvisited
function, we target branches that may call such functions.

Joern supports queries related to control structures. Given a
call expression to an unvisited callee within a hit function, we
can use Joern’s CPG to locate the branch predicate enclosing
the call. The first such branch is guaranteed to be un-taken.
However, in nested control structures, this may not be the
closest former branch predicate that has been evaluated, and
identifying the correct one may require line-level coverage
analysis. This can be costly due to complications like com-
ments and parsing behavior. Given AIxCC’s multi-language
scope, we conduct a simplified strategy: we target only the
immediate branch predicate preceding the call expression. De-
spite this simplification, we still observe a significant number
of viable cases, and we believe flipping such branches remains
highly meaningful. We left a more sophisticated localization
of the earliest evaluated branch predicate as future work.

Even with precise localization, some branches may still be
unreachable due to environmental constraints. For example,
when a harness hardcodes certain variables, such as enabling
logging, callee functions cannot be invoked by such variables.

To address this, we add a single-stage query to the LLM,
issuing a one-sentence prompt to assess whether the branch
is likely to be hit. We only attempt flipping for those deemed
feasible. Although this may yield false negatives, this filtering
is acceptable since the number of candidate frontiers still ex-
ceeds our processing budget. Additionally, we prioritize can-
didate frontiers based on the estimated number of reachable
functions or lines of code that can be explored upon unlocking
the blocker, thereby guiding the flipper toward high-impact
branches, which we previously referred to as the impactful
frontier.
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Figure 6: Workflow from collecting frontiers to transporting
to the branch flipper agent. Frontiers are collected by the
background coverage monitor with a call graph and assessed
for their impact through the estimated reachable functions
that have not been explored before.

3.5 Grounding LLM with Coverage Feedback

After the target branch predicate has been localized and the
LLM generates a corresponding mutated seed, we perform a
grounding step to evaluate the effectiveness of the attempt.

Once a new seed is generated, we execute the fuzz har-
ness with it and collect coverage information. If the target
function is reached or the unhit target branch is taken, the
seed is marked as a success and proceeds to the next branch
candidates. However, if coverage does not reflect success,
it is crucial to inform the LLM about the progress made in
execution.

Specifically, we compute the nearest hit line before and
after the target branch and feed this information back to the
LLM. This allows the agent to estimate which portions of
the program were executed and where progress was stuck.
The LLM then re-analyzes the code and attempts a new seed
generation along with some debugging trials.

However, we observe that even after multiple failures, the
LLM may hallucinate success, claiming that the predicate was
likely satisfied and that coverage measurement is faulty. In
these cases, the LLM often continues to generate seeds under
false assumptions.

To counteract this, we enforce a strict grounding. If cover-
age data indicates that the target was not reached, the system
requests at least one additional retry, regardless of the LLM’s
confidence. By introducing retry policies, we improve the
reliability and stability.

3.6 Further Details
Unlike centralized architectures where a single orchestrator
governs all tool calls, our system adopts a peer-to-peer agentic
model, in which LLM agents with distinct objectives com-
municate through message queue interfaces. Each agent is
self-directed, performing localized reasoning tasks and initi-
ating tool calls or requests to other agents as necessary.

The background fuzzer continuously monitors the evolu-
tion of the seed corpus. Upon detecting new frontiers, it trig-
gers a localization routine and stacks it as a candidate. The
seed generator pulls a candidate and tries to generate a new
seed. It can request coverage verification from the background
fuzzer, forming a mutually dependent workflow. This decen-
tralized architecture removes the bottleneck of a single orches-
trator and supports a more scalable, fault-tolerant execution
flow.

The other challenge is managing context length, especially
when operating on low-level codebases, such as those written
in C. In these settings, individual functions often span dozens
of lines, and naively injecting full source code can rapidly
exhaust the context length, degrading performance.

To address this, we implement a dedicated Source Review
Agent. When an LLM agent requires a detailed understanding
of specific code regions (e.g., to infer predicate conditions or
data structures), it queries the Source Review Agent instead
of embedding raw code into its own prompt. This subagent
handles code lookup and semantic summarization. Thus, the
parent agent can operate within a compact and structured
representation of the source, retaining high-fidelity analysis.

Figure 7: LLM Agents and their corresponding tools.

In practice, we also observe LLM’s tool usage biases, where
only a few tools are consistently invoked. To make the system
more consistent and compact, initially, we added all poten-
tially useful tools and observed the tool call tendencies. We
ensure that frequently used tools execute before invoking the
agent and inject the execution result into the agent prompt,
if possible. For example, initially, we gave a path to the har-
ness, and we observed that the agent always read the harness
first. We added the harness code to the prompt and removed
the harness reading tools. On the other hand, rarely used or
optional tools are either moved to subagents or completely
removed. This strategy reduces tool overload while ensuring
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necessary data is available without active tool invocation.
We structure the overall execution into a tree of LLM sub-

agents, each responsible for a narrow task domain. Upon the
system initialization, a target project is loaded, and Kaitai and
Python-based encoders and decoders are generated and stored
in a centralized database. During fuzzing, when a frontier
is detected, the localizer agent identifies the corresponding
branches and saves them to a candidate database. The branch
flipper pulls the most impactful candidate and tries to generate
a seed. The flipper receives the harness code, a stochastically
chosen encoder, decoder, and the definition of the target func-
tion, as well as the branch location and a visualized version
of the input seed. It solves subtasks using three primary tools:
the Source Review Agent, the Debugger Agent (which re-
ceives high-level debugging instructions and operates GDB
to gather information), and the Coverage Query Agent.

4 Experiments

We conducted experiments on several projects, targeting
C/C++-based applications such as Curl, Nginx, libpng, and
Zstd, as well as the Java-based application Tomcat. These tar-
gets include both benchmark applications provided by AIxCC
and external open-source projects.

Generating Kaitai Descriptor: The first step is generating
Kaitai descriptors. The LLM Agent is composed of tools
such as source_question, python_script, and compile_kaitai to
produce the Kaitai descriptor. For the Python-based encoder,
the compile_kaitai tool is replaced with a sanity_check tool,
which also performs oracle-like checks using the existing
corpus. For each project, we selected harnesses and attempted
to generate both encoders and decoders.

As seen in the Figure 3, 4, while the Python-based encoders
often missed details like the PNG header and just formed an
uninformative identity function, such details are clearly rep-
resented in the generated Kaitai descriptors. It seems that
the LLMs already know the published descriptors and utilize
them. For targets like Tomcat, where FuzzedDataProvider
is used, we found that byte stream issues, such as endian-
ness, were more accurately handled after integrating Kaitai.
Especially in the case of Zstd, which has a highly complex
FuzzedDataProvider logic, the original Python encoder is of-
ten reduced to trivial identity mappings. In contrast, the LLM
was encouraged to generate more sophisticated byte descrip-
tions when utilizing Kaitai-struct, even if partially.

We then used these encoders to attempt PoC seed genera-
tion, in the Table 1, as part of the AIxCC competition. Dur-
ing seed generation, we observed that it successfully triggers
vulnerabilities with the generated PoC when using Kaitai de-
scriptors. Since these results were complementary to the ones
generated with Python-based encoders, this provides indirect
evidence that using both in a dual-path setup is a meaningful
strategy for branch flippers.

ID Baseline Kaitai
Curl#48 Pass (0.170$, 7min) Pass (0.697$, 8min)
Curl#49 Pass (0.415$, 13min) Pass (1.372$, 12min)
libpng#37 Pass (0.247$, 4min) Pass (0.392$, 4min)
libpng#38 Pass (0.217$, 3min) Pass (0.326$, 3min)
libpng#39 Pass (0.267$, 4min) Pass (0.897$, 8min)
nginx#0 Fail (2.664$, 24min) Pass (0.637$, 11min)
nginx#11 Pass (0.238$, 3min) Pass (0.735$, 6min)
nginx#21 Pass (0.302$, 3min) Pass (0.989$, 12min)
nginx#34 Pass (0.266$, 2min) Fail (2.577$, 19min)
nginx#44 Pass (1.611$, 16min) Pass (0.869$, 7min)
nginx#74 Fail (2.477$, 26min) Fail (1.962$, 15min)
nginx#88 Pass (0.257$, 2min) Pass (0.532$, 5min)
tomcat#38 Fail (2.012$, 30min) Pass (0.900$, 8min)
tomcat#39 Fail (0.843$, 17min) Fail (0.724$, 17min)
tomcat#40 Fail (2.068$, 30min) Fail (1.331$, 20min)
zstd#47 Pass (0.144$, 2min) Pass (0.516$, 5min)
zstd#48 Fail (1.895$, 20min) Fail (1.397$, 11min)
zstd#49 Pass (0.310$, 4min) Fail (1.985$, 20min)

Table 1: Trials of PoC generation for given vulnerability with
several variants. ID represents each vulnerabilities, Baseline
use Python encoder only when generate a binary seed, Kaitai
utilizes Kaitai-struct only.

Branch Flipper: Next, we moved on to exploring branch
blockers and executing the flipper. Before we built an algorith-
mic localizer, we had the LLM directly localize the targeted
branches. However, case studies revealed that more than half
of the attempts failed to correctly localize the branches. Algo-
rithmic localization, on the other hand, significantly reduced
such mislocalizations.

Project #Trials #Success
Curl 13 7 (53.8%)
Nginx 11 3 (27.3%)
Tomcat 10 7 (70.0%)
PoC Generation 13 9 (69.2%)

Table 2: The success rates of precollected branch blockers.

We collected branch blocker cases that were ensured to be
solvable for each harness and attempted to flip them. Among
the branch blockers, some were semantically trivial, and the
branch flipper was able to solve those cases without difficulty.
However, in real cases, there were also instances where hard-
coded configurations or arguments in the harness prevented
child function invocation, or where flipping failed in some
cases despite being considered solvable. Nevertheless, given
that each project accumulates over 10,000 branch blockers per
hour, solving even just the not-that-difficult cases makes a rea-
sonable and effective complement to random mutation-based
greybox fuzzing.

We also investigated the applicability of our method to PoC
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ID Baseline + Branch Flipper
Curl#48 Pass (0.170$, 7min) Pass (0.126$, 11min)
Curl#49 Pass (0.415$, 13min) Pass (0.436$, 14min)
libpng#37 Pass (0.247$, 4min) Pass (0.171$, 5min)
libpng#38 Pass (0.217$, 3min) Pass (0.158$, 3min)
libpng#39 Pass (0.267$, 4min) Pass (0.348$, 9min)
nginx#0 Fail (2.664$, 24min) Pass (0.208$, 4min)
nginx#11 Pass (0.238$, 3min) Pass (0.245$, 6min)
nginx#21 Pass (0.302$, 3min) Pass (0.305$, 8min)
nginx#34 Pass (0.266$, 2min) Fail (1.496$, 15min)
nginx#44 Pass (1.611$, 16min) Pass (0.266$, 4min)
nginx#74 Fail (2.477$, 26min) Pass (0.795$, 11min)
nginx#88 Pass (0.257$, 2min) Pass (0.216$, 4min)
tomcat#38 Fail (2.012$, 30min) Pass (0.359$, 15min)
tomcat#39 Fail (0.843$, 17min) Pass (1.641$, 46min)
tomcat#40 Fail (2.068$, 30min) Fail (1.354$, 23min)
zstd#47 Pass (0.144$, 2min) Pass (0.102$, 3min)
zstd#48 Fail (1.895$, 20min) Fail (1.342$, 13min)
zstd#49 Pass (0.310$, 4min) Pass (0.804$, 8min)

Table 3: Trials of PoC generation for given vulnerability with
and without Branch Flipper. ID represents each vulnerabilities,
Baseline without branch flipper and + Branch Flipper with
branch flipper when generating PoC.

generation. In practice, we observed that while PoC genera-
tors could often identify suspicious or vulnerable code regions,
they failed to produce seeds that could successfully exploit
them. A common cause was the inability to reach the target
functions. To address this, we integrated our branch flipper
tool into the PoC generation pipeline. Experimental results
3 showed that our tool enabled successful PoC generation in
cases where the original system had previously failed due to
unreachable functions. Moreover, beyond simply reaching the
target functions, the branch flipper enabled the process to be
decoupled into two stages: generating inputs that reach the
vulnerable function and then modifying them to become ex-
ploitable, resulting in improved overall performance in some
cases.

5 Conclusion

We propose a cooperative agentic system designed to unlock
fuzz blockers in a greybox fuzzing environment. The system
operates with the goal of achieving coverage over previously
unhit functions by localizing blockers and generating targeted
seed inputs that can take the obstructing branches.

To support this, we suggest using an LLM to generate a
binary encoder and decoder, utilizing a Python sandbox and
the Kaitai-struct compiler. The LLM leverages subagents to
analyze the execution path, such as a source code review agent
and a GDB-based debugging agent. Based on reference seeds
that partially reach the target region, the LLM generates new

candidate seeds and evaluates them iteratively, incorporating
coverage-based grounding to mitigate hallucinations.

Using this system, we successfully unlocked real-world
fuzz blockers, contributing as one of the components in the
AIxCC challenge pipeline. However, we observed that many
blockers remain unsolvable, and in such cases, continued op-
eration of the LLM-based agent can lead to inefficient use of
computational resources and budget. This highlights a next
step of future work: developing a method to predict the solv-
ability of fuzz blockers, thereby improving resource efficiency
in autonomous fuzzing workflows.
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